6-10 10 - 11:30 Notes on partially ordered sets. Tomorrow, continue notes / research on lexicographic order
6-8 10 - 12 Did some exercises in schaums discrete math manual. Started looking at mit ocw 2005 problem set 3. Started taking notes in Discrete Mathematics with Applications 8.5 Partial Order relations. Continue this tomorrow (left off on p. 547)
6-3 10 - 12 Did exercise 10 and 13 of 4.3 how to prove it 2nd edition
6-2 10 - 12 Tomorrow, finish exercise 10 of Sec 4.3
5-28 10 - 12 Finished exercise 10. Started sec 4.3 of how to prove it 2nd edition. Did a few exercises. Tomorrow, do exercises 8/9/10 of sec 4.3
5-27 10 - 12 Went over exercise 7 in how to prove it 2nd ed. Started exercise 10. Tomorrow, finish exercise 10.
5-26 10 - 12 Reading on composition of relations. Did exercise 4 in How to Prove it 2nd Ed. Tomorrow, go over exercise 7
5-25 10 - 12 Reading on relations (How to Prove It 2nd ed) and exercises 1-4. Need a better understanding on composition of a relation with its inverse(4b).
5-24 10 - 12 Reading on relations (Book of Proof 2nd ed) pp 176
5-18 10 - 12 Reading on relations (Book of Proof)
5-18 10 - 12 Relation rosen 9.1 exercises
5-14 10 - 12 Notes on 9.4 closures of relations. For now, skipped Algorithm 1 (A procedure for computing the transitive closure) and Warshall's Algorithm).
5-13 10 - 12 Looked more into boolean products of zero-one matrices. Finished taking notes on rosen 9.3, about to start on Rosen 9.4 (Closures of Relations).
5-12 10 - 12 Finished taking notes on rosen 9.2, started on 9.3 (matrix representation of relations).. Need better understanding of boolean product of zero-one matrices.
5-11 10 - 12 An exercise from rosen 7th 9.1. Starting taking notes on sec 9.2(n-ary relations). Stopped at page 616 in the 8th edition, sec 9.2.5 SQL
5-10 - 10 - 12 Review MIT OCW 6.042J Fall 2005 In-Class Problems Week 4 Problem 3. Start taking notes / doing exercises in rosen 9.1
5-7 - 9:45 - 12 Notes on partially orders on sets, 6042j 2005 notes on relations, Partial order by function, MIT OCW 6.042J Fall 2005 In-Class Problems Week 4 Problem 3
5-6 - 9:45 - 12 Notes on relations, ended at Schaums Outline of Discrete Mathematics 2.5(pp 27)
5-5 - 10-12:00 Notes on relations, ended at bottom of http://faculty.uml.edu/klevasseur/ads/s-graphs-of-relations-on-a-set.html
5-4 - 10-12:10 Some binary relations exercises
5-3 - 10-12:10 Some exercises from rosen 9.1 (relations and their properties). Was taking notes regarding relations on the set of real numbers (#35)
4-29 - 10-12:40 notes on partial orders and their properties, total orders, products and restrictions of relations. (got to bottom of 2005 6.042j week 4 pdf page 11/21.. digraphs)
4-28 - Notes on binary relations of functions, equivalence relations, partitions of sets (got to bottom of 2005 6.042j week 4 pdf page 4/21)
4-27 - Did some WOP exercises. Read about completely tiling a checkerboard with trionimoes with one cell removed. Started taking notes / reading about binary relations (in particular, chap 9.1 of rosen discrete math 8th ed)
4-25 - stopped at how to prove it 2nd ed 6.4 (strong induction) (updating Strong Induction vs Induction vs Well Ordering Property) Finish reading through / documenting proof of fibonacci formula.